RC4558 DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIER

SLOS073B - MARCH 1976 - REVISED OCTOBER 2002

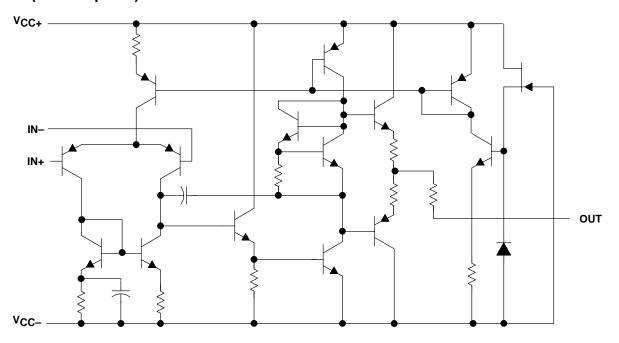
- Continuous-Short-Circuit Protection
- Wide Common-Mode and Differential Voltage Ranges
- No Frequency Compensation Required
- Low Power Consumption
- No Latch-Up
- Unity-Gain Bandwidth . . . 3 MHz Typ
- Gain and Phase Match Between Amplifiers
- Low Noise . . . 8 nV/√Hz Typ at 1 kHz
- Designed To Be Interchangeable With Raytheon RC4558 Device

description/ordering information

The RC4558 device is a dual general-purpose operational amplifier, with each half electrically similar to the μ A741, except that offset null capability is not provided.

The high common-mode input voltage range and the absence of latch-up make this amplifier ideal for voltage-follower applications. The device is short-circuit protected and the internal frequency compensation ensures stability without external components.

ORDERING INFORMATION


TA	V _{IO} MAX AT 25°C	PACKAGE†		PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
	6 mV	PDIP (P)	Tube	RC4558P	RC4558P			
		SOIC (D)	Tube	RC4558D	RC4558			
0°C to 70°C			Tape and reel	RC4558DR	KC4556			
0 0 10 70 0		SOP (PS)	Tape and reel	RC4558PSR	R4558			
		TSSOP (PW)	Tube	RC4558PW	R4558			
			Tape and reel	RC4558PWR	K4336			

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

SLOS073B - MARCH 1976 - REVISED OCTOBER 2002

schematic (each amplifier)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC+} (see Note 1)		
Supply voltage, V _{CC} (see Note 1)		–18 V
Differential input voltage, V _{ID} (see Note 2)		
Input voltage, V _I (any input, see Notes 1 and 3)		
Duration of output short circuit to ground, one ampli		
Operating virtual junction temperature, T		150°C
Package thermal impedance, θ _{JA} (see Notes 5 and	6): D package	97°C/W
, , , , , , , , , , , , , , , , , , ,	P package	
	PS package	95°C/W
	PW package	149°C/W
Lead temperature 1,6 mm (1/16 inch) from case for	60 seconds	260°C
Storage temperature range, T _{stg}		–65°C to 150°C
ES: 1 All voltage values upless otherwise noted are with respe	act to the midpoint between Voc. and V	100

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC+} and V_{CC-}.

- 2. Differential voltages are at IN+ with respect to IN-.
- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
- 4. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
- 5. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
- 6. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

		MIN	MAX	UNIT
V _{CC+}	Supply veltage	5	15	V
VCC-	Supply voltage		-15	V
TA	Operating free-air temperature	0	70	°C

SLOS073B - MARCH 1976 - REVISED OCTOBER 2002

electrical characteristics at specified free-air temperature, V_{CC+} = 15 V, V_{CC-} = -15 V

PARAMETER			TEST CONDITIONS†		MIN	TYP	MAX	UNIT
				25°C		0.5	6	
VIO	Input offset voltage		$V_O = 0$	Full			7.5	mV
I _{IO}				25°C		5	200	
	Input offset current		VO = 0	Full			300	nA
				range 25°C		150	500	
1	Input bias current		V _O = 0	Full		150	500	nA
IB	input bias current		VO = 0	range			800	ША
VICR	Common-mode input voltage range			25°C	±12	±14		V
			R _L = 10 kΩ	25°C	±12	±14		
\/			R _L = 2 kΩ	25°C	±10	±13		\ /
VOM	Maximum output voltage swing		Full	110			V	
		R _L ≥ 2 kΩ	range	±10				
	A _{VD} Large-signal differential voltage amplification		$R_L \ge 2 k\Omega$, $V_O = \pm 10 V$	25°C	20	300		V/mV
AVD				Full range	15			
B ₁	Unity-gain bandwith			25°C		3		MHz
rį	Input resistance			25°C	0.3	5		MΩ
CMRR	Common-mode rejection ratio			25°C	70	90		dB
kSVS	Supply-voltage sensitivity ($\Delta V_{IO}/\Delta V_{CC}$)		V _{CC} = ±15 V to ±9 V	25°C		30	150	μV/V
V _n	Equivalent input noise voltage (closed loop)		$A_{VD} = 100,$ $R_{S} = 100 \Omega,$ f = 1 kHz, BW = 1 Hz	25°C		8		nV/√ Hz
	Supply current (both amplifiers)		V _O = 0, No load	25°C		2.5	5.6	mA
Icc				T _{A(min)}		3	6.6	
				T _{A(max)}		2.3	5	
PD	Total power dissipation (both amplifiers)		V _O = 0, No load	25°C		75	170	mW
				T _{A(min)}		90	200	
			3.144.4	T _{A(max)}		70	150	
V _{O1} /V _{O2}	Crosstalk attenuation	Open loop	$R_S = 1 k\Omega$,	25°C		85		dB
.01, 002	5.555tain attoridation	$A_{VD} = 100$	f = 10 kHz			105		

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage, unless otherwise specified. Full range is 0°C to 70°C. T_{A(min)} is 0°C. T_{A(max)} is 70°C.

operating characteristics, V_{CC+} = 15 V, V_{CC-} = -15 V, T_A = 25°C

PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNIT
t _r	Rise time	V _I = 20 mV,	$R_1 = 2 k\Omega$	C _I = 100 pF		0.13		ns
	Overshoot	ν ₁ = 20 πν,	R = 2 KS2,	C[= 100 pr		5		%
SR	Slew rate at unity gain	V _I = 10 V,	$R_L = 2 k\Omega$,	$C_L = 100 pF$	1.1	1.7		V/μs

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated